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Simple Summary: The welfare of farm animals is a growing concern in the EU and across the world.
In milk production, there is a strong need to assess the welfare of dairy cows. One of the most
sound assessment initiatives has been practiced using protocols developed by the Welfare Quality
project. These protocols mainly support the assessment of cow welfare with animal-based indicators.
However, evaluating these indicators is time-consuming and expensive, so using precision livestock
farming (PLF) solutions is a way forward and is becoming a reality in the dairy industry. This
review presents advances in PLF solutions, particularly in the last five years, and for assessing the
animal-based indicators of lameness, mastitis, and body condition in dairy cattle farming.

Abstract: Specific animal-based indicators that can be used to predict animal welfare have been the
core of protocols for assessing the welfare of farm animals, such as those produced by the Welfare
Quality project. At the same time, the contribution of technological tools for the accurate and real-
time assessment of farm animal welfare is also evident. The solutions based on technological tools
fit into the precision livestock farming (PLF) concept, which has improved productivity, economic
sustainability, and animal welfare in dairy farms. PLF has been adopted recently; nevertheless,
the need for technological support on farms is getting more and more attention and has translated
into significant scientific contributions in various fields of the dairy industry, but with an emphasis
on the health and welfare of the cows. This review aims to present the recent advances of PLF
in dairy cow welfare, particularly in the assessment of lameness, mastitis, and body condition,
which are among the most relevant animal-based indications for the welfare of cows. Finally, a
discussion is presented on the possibility of integrating the information obtained by PLF into a
welfare assessment framework.

Keywords: dairy cows; welfare; precision livestock farming; lameness; mastitis; body condition
score; behavior; infrared thermography

1. Introduction

Animal welfare has long been considered a high priority within the European Union
(EU), with several legislative initiatives from the late 1980s to the present day [1]. In
parallel, the EU has invested significantly in research into farm animals’ welfare as part
of a policy-oriented approach to identifying ways to improve animals’ lives [2,3]. Animal
evaluation is an essential part of improving the standard of animal welfare. In this sense,
efforts have been made to research science-based welfare indicators as assessment tools [4].
For example, the Welfare Quality® project contributed with protocols to assess animal
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welfare in cattle, pigs, and poultry [5,6]. A few years later, the AWIN® project produced
indicators for species not considered in Welfare Quality®, namely horses, donkeys, turkeys,
sheep, and goats [7]. However, there are many practical challenges in applying these
protocols, which prevent them from having the maximum impact on the quality of life of
farm species [8–10]. Nevertheless, the developments achieved in the last two decades in
precision livestock farming (PLF), with close collaboration between researchers associated
with engineering and the livestock sector, have driven a significant evolution in animal
welfare assessment. PLF has developed rapidly in recent years, and animal welfare can be
objectively assessed in real-time using a wide variety of indicators [11]. This assessment
of welfare indicators is already possible, and it is expected to undergo extraordinary
progress in the near future for livestock production. This will require the use of the latest
developments in information, communication, and sensor technology [12]. Monitoring the
welfare of cows, their productivity, and management practices is achievable through data
from image, sound, and movement sensors that are combined with algorithms [13,14]. At
the moment, there is robust knowledge that points to the possibility of monitoring and
evaluating welfare automatically and with outputs that can be integrated into welfare
protocols [11,15,16]. Additionally, an appropriate data visualization is necessary, so that
farmers have a good acceptance of and efficiently use the technologies in PLF solutions [17].

In this review, an analysis will be made of the recent work of PLF in evaluating lame-
ness, mastitis, and body condition, which are considered welfare indicators for dairy cows.
It was also the objective of this review to point out future perspectives for PLF solutions, to
automatically include animal-based indicators in a dairy farm welfare framework, allowing
for the creation of better welfare for the animals and value for the farmer.

2. Welfare of Dairy Cows and Precision Livestock Farming

Currently, there are three welfare evaluation systems for dairy cattle, farmers assuring
responsible management in USA [18], the code in New Zealand [19], and welfare quality
in Europe [20]. The latter system has been seriously disputed in several reports [21–23],
which presented several suggestions for reducing the number of evaluated parameters to
overcome the time-consuming observations, which is a constraint that limits its routine
application in dairy farms. In addition to shortening the assessing procedures, the method
of calculating the scores was also changed and made more flexible, so that measures may
be substituted or added as considered appropriate [22]. Another welfare evaluation system
in development, according to Krueger et al. [24], is the integrated diagnostic welfare system
(IDWS). This system might address some of the shortcomings of the other three systems,
because it uses technology to help farms in the evaluation of animal welfare and to identify
any causes of poor welfare. However, a considerable amount of data and records are
needed to record animal behavior, health, and welfare conditions; and the use of sensors
and technology can help in this matter [25]. According to Knight [26], research on dairy
cow sensors has been very dynamic for assessing lameness, mastitis, and body condition,
which will be the focus of this work. However, the application of sensors is extended to
many other targets, such as aspects of reproduction (e.g., estrous cycle and parturition),
nutrition, health, and general management. In this way, the main monitoring systems in
dairy farms provide comprehensive information in different areas and demonstrate their
suitability and feasibility for application on the dairy farm [25].

2.1. Lameness

Lameness is ranked as the third most important cause of economic losses on dairy
farms, after mastitis and reproduction disorders. Lame cows are more frequently affected
by mastitis, metabolic disorders, and reduced fertility [27]. In dairy cows, lameness can
vary significantly in severity and can arise weeks, or even months, after a metabolic
disorder, making the detection of causality complex [28]. Lameness is usually detected
when the disease is already at an advanced stage and requires immediate and often
expensive treatment. An animal in these circumstances can take several weeks to recover,
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representing a high cost for dairy farmers in terms of time, financial expenses for calls to
the veterinarian, medication and treatment [29]. Time limitations of the dairy producers
is a factor that contributes to the under-detection of lameness problems. Therefore, using
flexible and affordable sensor-based systems is a need for recording the cows’ behavior and
thus identify the onset of lameness [30]. Lameness management consists of both prevention
and treatment. Prevention management is linked with factors that are associated with
lameness, such as improving walking surfaces, nutrition, and genetics. For a lame cow
to be treated, it must first be identified as lame by the farmer. This generally occurs in
three ways. The first is using a locomotion scoring system to systematically assess the
herd [31]. The second is routine hoof trimming. Here, legs are lifted, inspected, and, if
required, treated [32]. The third and most common is ad hoc observation during other
activities, such as herding. Unfortunately, ad hoc detection is ineffective at detecting mild
and even moderate lameness.

Automated lameness detection could provide useful cow and herd information ad-
dressing an information gap, particularly for mild and moderately lame cows. Earlier
detection and automatic drafting could reduce the time from lameness onset to treatment,
preventing cases from becoming severe, speeding up recovery, increasing production, and
improving welfare [33]. In addition, lame cows tend to spend less time eating, with shorter
bouts, and eat less during the day [34,35]. Automated lameness identification costs may be
prohibitive, depending on the system. Nevertheless, to increase the cost-effectiveness of
automatic systems, it is necessary to proceed with the downscaling of the current systems
to increase the sensor detection performance and further enhance the system for other
physiological states such as estrus, disease, calving, or body condition score (BCS) [36]. The
single accelerometer per cow approach is particularly promising from a cost perspective,
but several hurdles remain before such technology can be widely adopted on the farm.
The foremost of these is developing reliable indicators of lameness using only one low or
medium resolution pedometer. According to Schlageter-Tello et al. [37], most automatic lo-
comotion scoring systems attempt to mimic human observers by measuring and analyzing
cows’ locomotion and behavior parameters through sensors and mathematical algorithms.
The technologies employed can be grouped into kinematic (pressure plate/load cell solu-
tions, image processing techniques, and activity-based techniques); kinetic (ground reaction
force systems, force-scale weighing platforms, and kinetic variations of accelerometers);
and indirect methods, which mainly include behavior technologies and individual cow
milk production measuring technologies.

2.1.1. Pressure Plate/Load Cell

In pressure plate/load cell solutions, the aim is to examine how the weight is dis-
tributed across the legs of the animal as it walks through pressure-sensitive equipment.
Stance time asymmetry, as measured by a Gaitwise pressure sensor [38], and three-
dimensional force plate measurements of hind legs [39] have been identified as approaches
for identifying cow lameness. Van Nuffel et al. [40] reported that stride length (meters) and
duration (seconds) were indicative of lameness using the Gaitwise pressure mat system.
Using the Gaitwise system, stance time (weight-bearing) for the non-lame leg was also
found to be longer in lame cows [31]. Lame cows are cautious about placement of the
affected foot, as this action is painful [41]. These authors reported that the duration of
foot placement and foot lifting was relatively longer for lame cows. The disadvantage of
the Gaitwise system compared to other image-based systems is the larger space needed
for installation and the system cost. To reduce the cost, 14 configurations were studied to
simulate the effects of decreasing mat length and sensor resolution [41]. The results showed
that the length can be reduced by about 33% (4.88 to 3.28 m), while the downscaling of
the sensor resolution by up to four times the original resolution was possible without
decreasing the lameness detection performance for successfully monitoring one complete
gait cycle [41]. Table 1 reports a summary of research work for assessing the lameness of
dairy cows by kinematic and kinetic approaches.
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Table 1. Summary of research work for assessing lameness of dairy cows by kinematic and kinetic approaches.

Approach LS n Locomotion Test Layout
Results

Ref
SE (%) SP (%) Accuracy (%)

Kinematic
Gaitwise 1–3 159 Alley 0.61 m wide and 4.88 m long 76–90 86–100 [42]
Gaitwise 1–3 40 Active surface of 0.61 m wide and 4.88 m long [43]
Gaitwise 1–3 36 Active surface of 0.61 m wide and 4.88 m long 88 87 [38]

Gaitwise-14
configurations 1–3 45 55–61 [41]

3D Accelerometer 1–5 17 + 21 80–100 100 AUC = 0.87–1 [44]
Kinetic

3D Accelerometer 1–5 12 + 36 Passageway (13 m long × 1.3 m wide) >60 [45]
3D Accelerometer 1–5 17 100 75–83.3 AUC = 0.92–0.97 [44]
3D Accelerometer 1–5 21 83–91.7 66.7–83.3 AUC = 0.85–0.87 [44]
3D Accelerometer 1–5 348 Leg-mounted accelerometer [46]

Ground force reaction 1–5 610 Stepmetrix system 35 85 – [47]
Ground force reaction 1–5 83 Two parallel force plates 90 93 AUC = 0.98 [48]
Ground force reaction 1–5 105 Four-force plate-balanced system 50–100 91–100 – [49]
Ground force reaction 1–5 95 Weight distribution of 4 limbs in milking robot 62–75 [50]
Ground force reaction 1–5 261 Two parallel force plates cow walks over 100 100 AUC = 0.70–0.99 [51]
Ground force reaction 1–5 346 Two parallel force plates cow walks over 52 89 [52]
Ground force reaction 1–5 43 Four sensor weight distribution of 4 limbs in milking robot [53]
Ground force reaction 1–5 31 Two parallel force plates 0.84–0.63 [54]
Ground force reaction 6 Two parallel floor-plates plus SoftSeparatorTM [55]
Ground force reaction 1–5 9 Two parallel 3D strain gauge force plates 0.46 m × 2.07 m 91–97 [56]
Ground force reaction 6 Two parallel floor-plates loading platform–126 × 122 × 18 cm [57]

Load cells and platform 1–5 57 Four force plates cow stands on AUC = 0.64–0.83 [58]
Load cells and platform 1–5 57 Four force plates cow stands on AUC = 0.67 [59]
Load cells and platform 0–13 42 Platform with 4 independent sealed load cells 75–97 60–90 AUC = 0.84–0.87 [35]
Load cells and platform 1–5 16 Four-force plate-balanced system [60]
Load cells and platform 1–5 73 Four force plates cow stands on 100 58 86–96 [61]

Motion sensor 10 Motion sensor attached hind left limb 74.2 91.6 91.1 [62]
Motion sensor 65 Dairy cow individual sensor AUC = 0.71 [63]

LS, locomotion score; n, number of cows; SE, sensitivity = True Positive/(True Positive+False Negative) × 100; SP, Specificity = True
Negative/(True Negative + False Positive) × 100; AUC, area under the curve; Ref, reference.

2.1.2. Image Processing Techniques

Image processing techniques analyze the posture of the animal as it walks through
an alley or to a milking parlor. Solutions with 2D or 3D video cameras have the potential
to be applied in lameness monitoring systems. Considering the character individual of
normal and lame walking of the cows, however, challenges arise with the development of
algorithms that must work broadly for all cows. Real-time lameness detection systems must
consider normal and healthy behavior to detect abnormalities immediately to overcome
this challenge. Typically in the 2D and 3D image system, the back posture is examined to
measure the degree of lameness, and values are automatically extracted from a top view
of the cows [64]. However, as mentioned previously, the back posture shows individual
cow variation, indicating lameness for one cow but normal gait for another. Thus, cow
posture values must be analyzed individually and compared with what is considered
normal for each cow separately. The analysis of historical and real-time data from a given
animal allows tuning a model to a healthy reference behavior in the case of lameness
monitoring [65]. In addition, to overcome the inaccurate detection of lameness due to the
individual characteristics of cows, Kang et al. [66] successfully studied (accuracy of 96%) a
lameness detection method based on the supporting phase using computer vision. Van
Hertem et al. [64] achieved a high specificity of 94.1%, which means that their algorithm
generated minimal false alarms, a very desirable trait in lameness detection systems.
Table 2 summarizes the research works assessing the lameness of dairy cows using 2D and
3D sensors.
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Table 2. Summary of research works assessing the lameness of dairy cows using 2D and 3D sensors.

Image Equipment LS n Setup
Results

Reference
SE (%) SP (%) Accuracy

(%)

2D
Canon Powershot A620 1–3 28 Alley (1.2 m wide and 6 m long) >96 [67]

Guppy F-080C and Guppy F-036C 1–3 66 Alley (1.2 m wide and 6 m long) >96 [67]
Guppy F-080C 1–3 75 Pressure mat (1 m wide and 6 m long) [68]

Video Canon PAL MV690 1–5 60 Alley (1.6 m wide) electric fence posts [69]
Cannon 60D 1–5 90 Alley (1.5 m wide and 7 m long) 76 [70]
Nikon D700 1–5 8 Alley (1.5 m wide and 7 m long) 91 [70]

Nikon D7000 1–5 273 Alley (1.1 m wide and 6 m long) 76–88 95–97 91–96 [71]
Web camera Hikvision 1–3 98 Alley (2 m wide and 7 m long) 90.25 94.74 90.18 [72]
Panasonic DC-GH5S 1–3 100 Alley (1.2 m wide and 4 m long) 93–96 96 [66]
Panasonic DC-GH5S 1–3 100 Alley (1.2 m wide and 4 m long) 93–96 [66]

3D
Microsoft Kinect 1–5 186 3.20 m above ground level 55 90.9 [64]
Microsoft Kinect 1–5 273 3.15 m above ground level 82–88 91–95 90–96 [71]
Microsoft Kinect 1–5 242 3.45 m above ground level 68.5 87.6 79.8 [73]
Microsoft Kinect 1–5 242 3.45 m above ground level 70–72 [74]
Microsoft Kinect 1–5 270 3.45 m above ground level 74–72 60.2 [37]

LS, locomotion score; n, number of cows; SE, Sensitivity = True Positive/(True Positive + False Negative) × 100; SP, Specificity = True
Negative/(True Negative + False Positive) × 100.

2.1.3. Activity-Based Techniques

Activity-based techniques typically use accelerometers (2D and 3D) to record the
movement patterns of the animal. The data is then used to build the daily activities of the
cow, e.g., walking and lying down. In a recent comprehensive work on detecting lameness
in cattle, O’Leary et al. [75] support results from another report [76] that show the length
of lying time is not a reliable indicator because it only explained a small proportion of the
variation of lameness in dairy cows as lying time is influenced by many other factors. For
these reasons, further research to support automatic lameness detection needs to focus on
aspects other than lying time measures to succeed [75]. In this sense, other authors [77]
developed a model for automatic lameness detection using data from an accelerometer-
based approach applied to multiparous Holstein lame (n = 41) and non-lame (n = 12)
cows. This work showed that lame cows show shorter strides and a slower walking speed
than non-lame cows and that the best model to detect cows being lame considers the
number of standing bouts and walking speed with a sensitivity of 90.2% and specificity
of 91.7%. Also, measuring acceleration at the metatarsal level with accelerometers in
each of the hind limbs proved to be a promising tool to describe the different variables of
the gait cycle accurately [44]. In recent years, the development of accelerometer-based
automated lameness detection systems has continuously evolved [75]. The first system was
marketed in October 2018 by IceRobotics (Edinburgh, UK) [78]. In this system, each cow
is equipped with a single low-resolution accelerometer. The system presents users with
simple information similar to the traffic light system with the colors green, yellow and red
if the cows are identified as likely to be non-lame, maybe lame, or those likely to be lame,
respectively [78]. This approach can be very suitable for straightforward communication
to farmers [75]. Another lameness detection system that shows a good trade-off between
sensitivity and specificity is the combination of different sensor data, including milk yield,
neck activity, and rumination time, which can perform with a sensitivity of 89%, a specificity
of 85%, and an accuracy of 86% [64].

2.1.4. Behavior of the Cows

Behavior assessment has played a huge role in evaluating animal welfare [79,80],
including for dairy cows [81–83]. Since behavior assessment can be a long-term task, the
use of technology is crucial [16]. Evaluating change in an animal’s behavior is one of
the most used criteria to assess its health and welfare. A good example is given by the
pain linked with diseases of the claws or limbs of dairy cows, which produce changes
in movement pattern and a decrease in daily activity [77]. Using diverse sensor types
in different body locations (e.g., neck or leg-mounted) would be required to correctly
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classify lying, standing and feeding, which are key behaviors in dairy cows [30,84]. For
example, Barker et al. [30], who used automated behavioral data collection through a
combined position and activity sensor, observed a shorter feeding duration for lame
cows than non-lame cows. This result shows that behavior analysis can be a tool for
monitoring the health and welfare of cows [30]. The accelerometers can provide an indirect
measure of the flinch, step, and kick (FSK) response. This information, combined with
remote sensing of FSK, and integrated into existing systems where other production and
behavioral information is available (e.g., the number of visits, feed intake, milk yield), could
provide a non-invasive, real-time assessment of animal health and welfare. Combined
with other data using infrared thermography (IRT), an automated system may be able to
identify animals with the early onset of pathological or metabolic diseases and distress or
discomfort, allowing an early intervention by the farmer and improving animal health,
production, and welfare [84,85].

2.2. Mastitis

One of the most relevant diseases in dairy cows is mastitis, a cause of suffering in
infected animals, with worldwide recognized harmful effects on the welfare and prof-
itability of dairy farms [86,87]. Thus, producers have been concerned with implementing
effective methods to control mastitis in their herds since the first mechanized milking
systems appeared. The development and implementation of control programs that inte-
grate pre and post-milking teat immersion, correct milking procedures and restricted use
of antibiotics in drying only in infected cows have resulted in a significant decrease in
contagious pathogens. However, as mastitis pathogens emerged, researchers sought to
restrict the use of antimicrobials while preserving animal welfare and respecting universal
guidelines for unnecessary use. Thus, despite remarkable advances in mastitis control
during the last decade, mastitis will remain an important focus of future research [88].

Reliable detection of mastitis through automated methods represents an excellent
opportunity to carry out early treatment programs and avoid overuse of antibiotics, pre-
serving the health and welfare of cows, avoiding discomfort and pain, improving the
recovery rate and the economic sustainability of farms [89,90]. Effective diagnostic meth-
ods can lead to faster and more efficient mastitis control and promote responsible use of
antimicrobials [91]. It is also essential to reliably score the severity of clinical mastitis to
predict treatment outcomes [92] and adapt treatment protocols accordingly.

2.2.1. Somatic Cell Count (SCC)

Health management is essential for maintaining efficient and sustainable dairy pro-
duction. Somatic cell count (SCC) is the most used indicator to assess udder health status
in dairy cows, being used at a quarter, cow and bulk tank levels. In automatic milking
systems (AMS), fully automated online analysis equipment is available to analyze SCC at
the farm at each milking [93]. Moreover, from the results of the online SCC, a number of
additional cows and quarter level factors important for udder health are recorded in these
systems [94]. The SCC can, to some extent, be used for the surveillance of intramammary
infection, and the industry has advanced toward developing new sensors that are designed
explicitly for udder health surveillance. One of these is the DeLaval Online Cell Counter
(DeLaval, Tumba, Sweden), which allows repeated measurements of cell counts at the cow
level. These may be implemented in automated detection systems to manage udder health
in AMS [95]. This represents a considerable increase in the amount of data, for example,
for udder health management, which can also serve as phenotypes for reproductive pro-
grams. In addition to the frequent measures of SCC, a number of additional cow level and
quarterly factors considered of importance for udder health are recorded in the AMS in
each milking [96].
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2.2.2. Electrical Conductivity and Lactate Dehydrogenase

Electrical conductivity (EC) and enzymatic concentrations of lactate dehydrogenase
(LDH) have been used as indicators to detect mastitis [97,98]. Recent works have shown
the potential of using sensors for automatic measurement of EC and LDH; however, the
results showed that there is still a need for further research in this field [96]. In recent
years, there has been an increasing choice of AMS worldwide. This type of equipment
allows producers to increase milking frequency, milk production per cow and reduce labor
costs [99]. The AMS is equipped with in-line sensors that measure EC to detect mastitis.
These sensors make a continuous assessment of the concentration of milk ions during the
milk collection process. However, the results are variable, with the first milk collected
before milk ejection being more sensitive to detecting mastitis than the first harvested milk,
which is explained by udder preparation and teat cleaning in AMS systems [100]. For this
reason, it is pointed out that in the future, to improve the ability of AMS to detect mastitis,
sensors should monitor the milk before teat cleaning [100].

2.2.3. Infrared Thermography

Infrared thermography (IRT) is a non-invasive technology that allows accurate tem-
perature measurement from a distance with a wide application in animal science [101,102].
In dairy production, IRT has been successfully used for early mastitis detection. Despite
the proven ability to detect mastitis, there are limitations in the manual analysis of animals
because this is time-consuming and requires a skilled examiner [103]. Zaninelli et al. [104]
used software that located the pixel with the highest temperature in udder thermograms to
distinguish between cows with normal and elevated SCC. Automatic evaluation of ther-
mograms of bovine udders that received an intramammary challenge with E. coli showed
promising results for detecting clinical mastitis, and these results were valid compared with
the current gold standard of manual evaluation. We presume that the higher temperatures
observed using manual analysis occurred because warmer regions were included, such
as the udder–thigh cleft, whereas automatic segmentation omits these regions [103]. This
method may also detect changes in the inner core temperature, such as fever. However,
infrared thermography is intended for use as an automatic health surveillance tool and
should not replace the examination of individual animals [105].

2.3. Body Condition Scoring

Body condition is a significant welfare and herd management indicator. Body condi-
tion is in high correlation with the health and metabolic status of the dairy cow and also
with milk composition during lactation [106]. Body condition assessment is an indirect
appraisal of the level of body reserves, and deviations reveal aggregate variation in energy
balance [107,108]. The routine evaluation of body condition is based on visual observa-
tion and palpation of specific body areas to determine a score that assesses the adipose
tissue and muscle mass deposits [109]. This assessment approach, generally known as the
body condition score (BCS), has justified attention as a relevant tool for managing dairy
herds [110].

BCS assessment can be performed by visual assessment or by a combination of visual
indicators with palpation of bone structures and the degree of subcutaneous fat. The
key areas for BCS assessment are the backbone, pins, tail head, long ribs, short ribs, hips,
and rump [106]. Over the years, different scoring scales have been developed around the
world. For example, a five-point scale system was commonly used in the USA, proposed
by Windman et al. [111]. For its part, Ferguson et al. [112] proposed a scale of 0 to
5, subdivided into 0.25 centesimal, which assesses the body condition, particularly the
adipose tissue of the cow’s lumbar and pelvic areas. Despite the general agreement of
dairy producers, nutritionists, and herd managers about the benefits of BCS evaluation,
some factors discourage the use of traditional BCS evaluation techniques [113]: subjectivity
in judgment can lead to different scores for the same cow under consideration, and the
complex and time-consuming on-farm training of technicians [107]. Moreover, to have
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valuable information, cow measurements must be collected every 30 d throughout the
lactation cycle [114], thus increasing the cost and complexity of collecting BCS data. To
overcome these limitations, several solutions have been developed within the scope of the
PLF that have shown very encouraging results. The most interesting solutions utilize image
capture and analysis as vision-based body condition scoring systems, which somewhat
mimics the traditional BCS assessment. Another imaging approach that has been used
to measure body and carcass composition is ultrasound [115]. This technique has been
widely used to monitor body condition in small ruminants [116,117], in swine [118], and
in cattle [119]. For dairy cows, recent studies [120,121] showed the relevance of using
ultrasound to assess the body reserves of cows with ultrasonic measurement to scan
the body regions that are connected to the BCS evaluation, such as the ribs, pin, tail-
head, and lumbar spine. However, despite the high accuracy for BCS prediction, the
cows must be individually restrained to capture the ultrasound images, making this
technique less suitable for analyzing large numbers of animals in multiple sessions over
time. Therefore, this method is not appropriate for larger-scale farms with hundreds
of animals. Consequently, the ultrasonic technique is reserved for punctual analyses or
validation of other methods, such as those supported by cameras, where it is possible to
obtain a BCS evaluation of animals in motion [122,123].

Vision-Based Body Condition Scoring Systems

Recently, a variety of vision-based solutions for BSC monitoring have been developed
and tested, such as thermal imaging [122], 2D imaging [124], and 3D imaging technol-
ogy [125,126]. Data analysis approaches have been applied to monitor the development of
sensors, which increase the developed systems’ capacity, with examples such as Fourier
transformation [123] and machine learning [127]. However, despite the advances already
made, there are still limitations to fully automated solutions. Nevertheless, with the devel-
opment of cameras and software we are approaching objective and automatic BCS. The
vision-based solutions remove the guesswork and imprecisions of conventional scoring,
while the efficiency can be significantly improved. These reasons are certainly the basis
for developing equipment that is well accepted by producers [128]. Table 3 summarizes
research work assessing cow body condition score using 2D and 3D sensors.

Over the last decade, several researchers have focused their work on approaches with
2D cameras, but especially in recent years, attention has focused on 3D sensors, which
have been widely applied to measure the energy reserves of dairy cattle [129]. 3D sensors
have very different costs and typically use the time-of-flight (TOF) principle [130]. Sev-
eral researchers, including Weber et al. [131], Spoliansky et al. [132], Alvarez et al. [133],
Shigeta et al. [134], Hansen et al. [135], and Song et al. [136], used 3D sensors such as Mi-
crosoft Kinect or Asus Xtion2, which are related to gaming activities, and, therefore, aimed
at reaching a vast market with a consequent decrease in sensor cost. Even so, 3D cameras
are generally expensive, particularly those not incorporated in commercial solutions, which
is understandable as the latter are subject to very challenging environments, which requires,
in addition to the quality of the sensors, robust waterproof and dustproof equipment.

Table 3. Summary of research work assessing cow body condition score using 2D and 3D sensors.

Sensor n Sensor Position Accuracy
Accuracy within BCS Points

Deviation (%) Reference
0 0.25 0.5

2D Sensors
Black-and-white 2571 60 to 70 cm above the cows’ backs 93 100 [137]

AXIS 213 PTZ 286 3 m above ground Error = 0.31 [113]
InfraCAM SD Flir 186 3.1 m above ground. Exit milking parlor R = 94 [122]

Nikon D7000 DSLR 151 Still camera-milking parlor R2 = 77 50 100 # [124]
Sony, DCR-TRV460 46 3 m above ground R2 = 90 [138]

Hikvision DS-2CD3T56DWD-I 8972 2.6 m the ground. Milking passage R2 = 98.5 [106]
Hikvision DS-2CD3T56DWD-I 2231 Cows walk below the camera 65 95 [129]
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Table 3. Cont.

Sensor n Sensor Position Accuracy
Accuracy within BCS Points

Deviation (%) Reference
0 0.25 0.5

3D Sensors
Mesa 3D ToF 40 Hand-held setup 79 100 [139]

SR4K time-of-flight 540 Above electronic feeding dispenser R2 = 89 [140]
ToF MESA SR4000 1329 Above DeLaval AWS 100 R = 84 [141]

Asus Xtion Pro 95 1.5–2m above the cow R2 = 93.3 [142]
Asus Xtion Pro 82 2 m above ground R = 96 [143]
Asus Xtion Pro 27 80 cm on cow’s surface R2 = 74 [144]

PrimeSense™ Carmine 116 1.5 m from the cows’ backs 71 94 [145]
Microsoft Kinect v1 20 2.5 m above platform 91 [132]
Microsoft Kinect v2 1661 2.8 m above ground-milk parlor 40 78 94 [146]

Intel Realsense SR300 44 2.3 m above the platform R2 = 72 [136]
Intel RealSense D435 480 3.2 m above ground 77 98 [147]
Microsoft Kinect v2 1661 2.8 m above ground-milk parlor 82 97 [133]
Microsoft Kinect v2 53 2.5 m above the ground R2 = 63 [125]
Microsoft Kinect v2 38 3 m above the ground 56 76 94 [126]

3D ToF 52 3.4 m above ground-rotary parlor MAPE = 3.9 [148]

n, number of cows; ToF, time of flight; BCS, body condition score; R, correlation coefficient; R2, coefficient of determination; MAPE, mean
absolute percentage error; #, accuracy within 0.75 BCS points deviation.

Making systems automatic is a necessary step to gain the interest of producers and
thus turn the systems into a commercial business. To date, there are four automated BCS
systems on the market [149]. All four systems use approaches based on image analysis
captured from a 3D sensor placed on a higher plane of the rump and lumbar regions of
the cows [149]. This is also the most common approach in non-commercial 3D and 2D
solutions (Table 3). The commercial automatic BCS systems are DeLaval BCS (DeLaval
International AB, Tumba, Sweden), BodyMat F (Ingenera SA, Cureglia, Switzerland),
Biondi 4DRT-A (Biondi Engineering SA, Cadempino, Switzerland), and Protrack® BCS
(LIC Automation, Hamilton, New Zealand). The first commercially available system was
the DeLaval BCS based on 3D image processing technologies; it was designed in 2015 by
DeLaval Corporate [132]. The system operates while the cows move through a fixed point
in the barn or on the DeLaval VMS™. The concept has made it feasible to incorporate
BCS into herd management. The 3D camera is linked to a radio-frequency identification
(RFID) system, which allows continuous monitoring of BCS and the use of this information
in herd management systems [109]. A validation study has been conducted to examine
the performance of the DeLaval BCS system [150]. This system was found helpful for
automated monitoring of BCS variation. Moreover, the BCS camera system was reliable for
cattle scored within the range of 3.00–3.75, where most cattle on the tested farm belonged,
but did not score accurately with less than 3.00 and above 3.75. Furthermore, recently, an
independent review of the BodyMatF BCS system has been published [149]. This work
reached results similar to those obtained in the previous work, and allowed concluding
that the automated and non-subjective nature of the BodyMatF system, combined with
the ease of collecting regular scores, make this system likely to be of value in commercial
and research contexts to evaluate Holstein-Friesian cow body condition. This technology
can serve as a consistent source of BCS scores, which can be included in management
processes and in the welfare assessment protocols. BCS has been included in the Welfare
Quality protocols as an animal-based indicator linked to animal feed [151]. Similar to what
is already in practice for other species (e.g., EyeNamic for Poultry and Swine [16]), PLF
technologies have proven to be a step forward in the individual assessment of cows by
continuous real-time monitoring of health and welfare [13,152].

3. The Potential of PLF for Assessing Welfare Animal-Based Indicators of Dairy Cattle

The assessment of the welfare of dairy cows, as well as other farm animal species
involves audits that are time-consuming and expensive, as welfare is a complex multi-
dimensional phenomenon [151]. On the other hand, with the advances that have been
made in recent years in the use of sensor technologies, the main objective of PLF, which
is the continuous real-time on-farm monitoring of individual animals to improve pro-
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duction/breeding, health and welfare, and environmental sustainability, is already being
fulfilled in various aspects of dairy cattle production [152]. Regarding dairy cattle welfare
assessment, as is the case with the Welfare Quality® protocol, its application has meaningful
constraints, as its application is very time-consuming [22] and lacks correspondence with
trained users on the importance of several welfare measures [153]. In addition to reducing
the evaluation time, several authors proposed some changes to the calculations, such as
the one reported by Van Eerdenburg et al. [21] for drinking water. Moreover, the welfare
calculations require more flexible methods, especially for the overall score [22,153]. That
is why the possibility of applying PLF solutions to assess the animal-based indicators of
lameness, mastitis, and body condition presented in this review will be very welcome. The
advances discussed show that several PLF solutions have been developed and validated in
recent years, and that is why there is the capacity to address the three animal-based indica-
tors mentioned by commercial PLF technologies. Moreover, a recent review [12] pointed
out that it will be necessary to modify some of the protocol criteria to take full advantage
of the continuous measurement and individual monitoring of cows. This modification can
rely on animal-based welfare measures, such as those analyzed in this paper and others, as
suggested by Tuyttens et al. [22], who reviewed the Welfare Quality Protocol and found a
more user-friendly, more time-efficient approach for assessing dairy cattle welfare, with
the inclusion of only six animal-based indicators. There should also be room for other farm
animal welfare frameworks, such as the five domains model [151]. The five domains model
has gained interest among farm animal welfare researchers and has also been included in
discussing the potential of applying the PLF to this model [154]. With the evolution of PLF
solutions, the real-time monitoring of cow welfare supported by animal-based indicators is
now undoubtedly feasible. Therefore, current scientific knowledge and technological de-
velopment (e.g., Stygar et al. [13]) foresees important PLF developments in the near future,
which will widen opportunities for assessing and improving the welfare of dairy cows.

4. Challenges for the Future

Precision livestock farming is recognized as fundamental for future dairy producers,
allowing the continuous monitoring of the health and welfare of animals in production. In
this review, the progress of exploiting technology for monitoring lameness, mastitis, and
body condition in dairy cows is evident. For these problems, identified as animal-based
indicators, accurate continuous monitoring systems, which avoid false alarms, are neces-
sary for farmers to trust and adopt these technologies. Furthermore, to assess the welfare
of dairy cows, a detailed early warning system is essential to prevent the development of
more severe diseases and welfare problems. Finally, research into technology that ensures
the welfare of dairy cows has provided several indicators that could be automatically
measured and integrated into an assessment system.
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