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Featured Application: Exploration of Lactobacillus helveticus strains as source of bioactive pep-
tides for potential applications as functional foods as well as for potential uses in nutraceuticals.

Abstract: Among various food sources, milk proteins remain the major vector for functional peptides
endowed with several biological activities. Particularly, the proteolytic activity of lactic acid bacteria
during milk fermentation has been one of the most followed strategies to produce bioactive peptides.
In the present study, the exploration of the activity of several starter cultures, at different fermentation
times, was firstly investigated by reversed phase-high performance liquid chromatography. Among
the tested strains, Lactobacillus helveticus showed a higher proteolytic activity and it was submitted
to further investigations by changing the fermentation substrate (skim milk, brain heart infusion,
peptone water) as well as the extraction strategy (trichloroacetic acid vs. glass beads). The chromato-
graphic analyses and the in vitro antioxidant and antihypertensive assays highlighted considerable
differences for L. helveticus hydrolysates from different substrates, while a negligible impact by
the two extraction protocols emerged. Furthermore, nano-high pressure liquid chromatography
coupled with a high resolution mass spectrometry analyzer allowed the preliminary discrimination
of fractions from fermented skim milk, likely responsible for the found activity. The obtained results
suggest the possibility of varying the fermentation parameters in order to maximize the functional
effects of the bioactive peptides.

Keywords: bioactive peptides; Lactobacillus helveticus; fermentation substrate; liquid chromatography;
antioxidant activity; ACE inhibitory activity

1. Introduction

In the last decades, the role of proteins in food has gained increasing acknowledgement.
Beyond their purely nutritional role, bioactive peptides (BPs) encrypted in dietary protein
sequences are emerging as an important tool for the treatment of various diseases [1,2].
The release of the active form of BPs from the sequence of the parent protein could mainly
follow three processes, namely, (i) the hydrolysis by gastrointestinal digestive enzymes,
(ii) the hydrolysis by proteolytic microorganisms (during fermentation), or (iii) the action
of proteolytic enzymes derived from microorganisms or plants [3]. Once split from their
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precursors, BPs contribute to the modulation of different body functions exerting, inter alia,
antioxidant, digestive, immunomodulatory, hypotensive, antithrombotic, antibacterial, and
opiate-like properties. Such potential health benefits justify the emerging employment of
BPs and protein hydrolysates as valuable sources for physiological functioning and human
well-being promotion [1–3].

Although potential BPs have been identified from various food proteins (of either
animal or plant origin) [1,4] and their intake could be regularly associated with the current
diet, milk proteins remain the major source of functional BPs endowed with a wide range
of biological activities. The occurrence of biofunctional peptides with high nutritional value
has been also widely reported in fermented milk products such as yogurt, cheese, sour milk,
or kefir, and some of them have been shown to contain health beneficial properties [2,5].
This feature accounts for the growing interest by food scientists in exploiting protein
hydrolysates and bioactive peptides from milk and dairy products for applications as
functional foods as well as for potential uses in nutraceuticals [2,5].

The proteolytic activity of lactic acid bacteria (LAB) during milk fermentation has
been, and still is, among the most pursued strategies to produce functional peptides. In
this scenario, the research of novel tailored strategies to exploit dairy fermented foods
as sources of health peptides is widely increasing. As reported in literature [5–8], BPs
generated during milk fermentation mostly range from 2 to 20 amino acids and some of
them are known to display multi-functional properties. BPs have been mainly screened
for their capacity to exhibit specific biological properties, with particular attention paid
to the antioxidant [9,10], angiotensin-converting enzyme-inhibitory (ACEi) [11–13], and
antimicrobial [14,15] actions among others. Although numerous approaches dealing with
the production of BPs from a variety of sources are described in literature [16,17], often
misleading and incomplete evidences still drive the rational selection and fermentation
conditions of specific strains for the generation of active components. Moreover, the lack
of systematic approaches, allowing overcoming of challenging peptide extractions and
purifications, represents one of the major limitations in BP production.

The present study was aimed at being a preliminary exploration of the proteolytic
activity of several starter cultures, sampled at different fermentation times and in the
presence of diverse substrates, in producing protein hydrolysates. The fermentation
activity was monitored by reversed phase-high performance liquid chromatography (RP-
HPLC) in order to get a comprehensive characterization of the obtained peptide pool
and select the best parameters to maximize the production of BPs. Moreover, the in vitro
antioxidant and antihypertensive activities of protein hydrolysates were evaluated as pilot
discriminant before following steps addressed to the purification and characterization of the
final BP products. In this frame, nano-high pressure liquid chromatography coupled with
high resolution mass spectrometry analyzer (nano-HPLC-HRMS) allowed the preliminary
identification of fractions from fermented skim milk likely responsible for the above-
mentioned bioactive properties (an overview of the anaytical approaches applied in the
present study is given in the Graphical Abstract).

2. Materials and Methods
2.1. Chemicals and Reagents

HPLC-grade and MS-grade acetonitrile (ACN), trifluoroacetic acid (TFA), formic acid
(FA), trichloroacetic acid (TCA), ethanol (EtOH), urea, TRIS-HCl, diammonium 2,2′-azino-
bis(3-ethylbenzothiazoline-6-sulphonate) (ABTS), 2,4,6-tris(2-pyridyl)-s-triazine (TPTZ),
6-hydroxy-2,5,7,8-tetramethyl-2-carboxylic acid (Trolox), ferric chloride (FeCl3), sodium
acetate buffer, potassium persulfate, sodium borate, sodium chloride (NaCl), hippuryl-L-
histidyl-L-leucine (HHL), hippuric acid, glass beads, and rabbit lung powder containing
ACE (0.1 U) were purchased from Sigma Aldrich (Milan, Italy). Water for HPLC analysis
was purified with a Milli-Q Plus185 system from Millipore (Milford, MA, USA). All the
employed mobile phases were mixed and preliminarily degassed by sonication for 10 min
before use.
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2.2. HPLC-UV Conditions

The HPLC study was performed on a Thermo Separation low-pressure quaternary
gradient pump system (Spectra system Series, Thermo Scientific, Waltham, MA, USA)
supplied with a GT-154 vacuum degasser (Shimadzu, Kyoto, Japan). The system was
equipped with a SPD-10A UV-Vis detector (Shimadzu, Kyoto, Japan) and a Rheodyne
7725i injector (Rheodyne Inc., Cotati, CA, USA) with a 20 µL stainless steel loop. Data
management and acquisition was made by means of Clarity Lite chromatography software.
UV detection was carried out at 210 nm. The analytical columns were: Robusta RP18
(250 × 4.6 mm i.d., 5 µm, 100 Å pore size from Sepachrom, Milan, Itay), Grace Smart RP
18 (250 × 4.6 mm i.d., 5 µm, 120 Å pore size from Sepachrom, Milan, Itay), Kinetex EVO
C18 (250 × 4.6 mm i.d., 5 µm, 100 Å pore size from Phenomenex, Milan, Itay), Gemini
NX (250 × 4.6 mm i.d., 5 µm, 110 Å pore size from Phenomenex, Milan, Itay). In the
optimized conditions, column temperature was fixed at 40 ◦C through a Grace (Sedriano,
Italy) heater/chiller (Model 7956R) thermostat. The final gradient program, at a flow rate
of 0.8 mL/min, was the following: eluent A (0.1% (v) TFA in water), eluent B (0.1% (v)
TFA in acetonitrile, ACN); 0–45 min, linear gradient from 100% to 75% A; 45–60 min, linear
gradient to 60% A. At the end of each run, a column cleaning step (10 min) with 100% B
was added to remove more hydrophobic compounds before column re-equilibration with
100% A (30 min).

2.3. Bacterial Strain Selection and Propagation

Several strains, which showed growth in the range 10–37 ◦C, both in aerobic and
anaerobic conditions without gas production from dextrose, were tested for acidifying
activity in skim milk (SM, BD Difco, 232,100). Then, based on the instantaneous acidification
rate and its maximum value [18–22], a selection of ten strains was used for the production
of BPs.

The strains tested in this work were: Lactococcus lactis ssp. lactis (internal reference (ref.
79, field strain), Lactococcus lactis ssp. lactis (ref. 81, field strain), Lactobacillus casei ssp. casei
(ref. 80, filed strain), Lactobacillus acidophilus ATCC 4356 (ref. 618), Lactobacillus acidophilus
LA 14 (ref. 1004), Lactobacillus acidophilus (ref. 80/2, field strain), Lactobacillus acidophilus
(ref. 80/3, field strain), Lactobacillus helveticus (ref. LH, field strain), Enterococcus faecium
UBEF-41 (ref. 1003), and Saccharomyces cerevisiae var boulardii MTCC-5375 (ref. 1005).
The morphological, biochemical and physiological characterization, the growth curves
at several temperatures, including refrigeration conditions, the acidifying activity and
their ability to improve palatability of certain food, along with safety considerations, have
been reported by the authors in previous papers [18–22]. Before the test, freeze-dried
strains of the starter cultures were grown aerobically in nutrient broth (NB, Oxoid CM0001,
Basingstoke, UK) at 37 ◦C for 24 h. Each strain was then sub-cultured in skim milk (BD
Difco, Franklin Lakes, NJ, USA, 232,100) at 37 ◦C for 24 h. The total viable cell (TVC) count
(on nutrient agar, NA, Oxoid CM0003, incubated at 37 ◦C in aerobiosis for 24 h) after 24 h
of incubation (Sanyo MIR-153 incubator, Moriguchi-City Osaka, Japan) was approximately
1 × 109 cfu/mL. For tests, the strains were inoculated into skim milk (BD Difco) to get
an initial concentration of approximately 1 × 107 cfu/g, which mimics the initial starter
concentration in dairy products fabrication. The fermentation activity was monitored at
different time points (Table S1, Supplementary Material).

2.4. Evaluation of Different Substrates and Comparison of Two Extraction Protocols for Milk
Fermented with L. helveticus

L. helveticus (Ref. LH) was inoculated in three different culture media, skim milk
(SM, BD Difco), brain heart infusion (BHI, Oxoid) and peptone water (PW, Oxoid) and
fermentation was carried out for 12 h and 110 h at 37 ◦C in aerobiosis. The conditions of
bacterial growth and inoculation described in Section 2.3 were applied when the three
substrates (SM, BHI, and PW) were used as culture media.
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Two extraction protocols were used for peptide recovery within the fermented prod-
ucts, as described below:

(i) an aliquot of fermented substrate (1.0 mL) was treated with an aqueous TCA
solution (1.0% w/v, 500 µL), vortexed (ZX3 VELP Scientifica, Usmate, Italy) for 1 min and
centrifuged (ALC 4239R high speed refrigerated centrifuge, International PBI, Milan, Italy)
at 10,000× g for 10 min at 4 ◦C. For each sample the supernatant was separated from the
precipitated fraction and stored at −20 ◦C until further investigations;

(ii) an aliquot of fermented substrate (1.0 mL) was treated with glass beads (100 mg)
and an aqueous solution of urea/TRIS-HCl (urea 2.0 M + Tris-HCl 50 mM, pH 7.4, 500 µL).
The mixture was sonicated for 10 min at 25 ◦C, and then centrifuged at 10,000× g for
10 min at 20 ◦C. For each sample the supernatant was separated from the precipitated
fraction and stored at −20 ◦C until further investigations.

2.5. Determination of the ACE Inhibitory Activity

The ACE inhibitory (ACEi) activity of each hydrolysate (from SM, BHI, and PW) was
measured spectrophotometrically (PerkinElmer, Inc.; Waltham, MA, USA) using the slightly
modified method of Muguerza et al. [12]. A buffer solution of sodium borate (100 mM)
containing NaCl (300 mM) was prepared and the pH value was adjusted to 8.3. An aliquot
of HHL solution (5 mM in buffer, 100 µL) was mixed with each hydrolysate (40 µL) and
the mixture was submitted to pre-incubation at 37 ◦C for 2 min (distilled water was used
for the control sample). The reaction was initiated by addition of an aqueous ACE solution
(0.1 U/mL, 20 µL) and carried out at 37 ◦C for 30 min. Finally, HCl (1.0 N, 150 µL) was
added to stop the enzymatic reaction. The released hippuric acid was extracted with ethyl
acetate (1.0 mL), after a vigorous stirring for 20 s and centrifugation at 1500× g for 10 min.
An aliquot of ethyl acetate extract (150 µL) was dried under vacuum (BUCHI Rotavapor
R-114/B-480 waterbath, Cornaredo, Italy), re-dissolved in water (50 µL), and analyzed via
HPLC by using a Robusta RP18 column to determine the hippuric acid formed during the
enzymatic reaction. The following experimental conditions were used: mobile phase, 0.1%
(v) TFA in water/0.1% (v) TFA in ACN-80/20 (v/v); eluent flow rate, 1.0 mL/min; column
temperature, 30 ◦C; and wavelength of detection, 228 nm. The hippuric acid quantification
was performed by relying upon a calibration curve built up by using standard solutions
with concentration values in the range 0.001–0.1 mg/mL (y = 509.55x + 0.1626, R2 = 0.9999).
The % inhibitory activity was calculated according Equation (1) as follows:

% Inhibitory activity =
(Cc−Cs)
(Cc−Cb)

× 100 (1)

where Cc is the hippuric acid concentration in the presence of ACE without hydrolysate
(control, 100% ACE activity); Cs is the hippuric acid concentration in the presence of both
ACE and hydrolysate; and Cb is the concentration in the presence of hydrolysate without
ACE (Blank, 0% ACE activity).

HPLC analyses were performed in duplicate.

2.6. Determination of the Radical Scavenging Capacity by the ABTS Method

The ABTS radical-scavenging assay was measured according to previously reported
methods [23,24]. The ABTS+• radical cation was generated by reaction of ABTS with
potassium persulfate and incubating the mixture in the dark at room temperature for 12 h.
Then reagent obtained was diluted with EtOH until its absorbance at 734 nm was 0.70
(±0.02). An aliquot of ABTS+•/EtOH solution was added to the hydrolysate (60 µL of
supernatant) and the mixture was kept in the dark for 30 min. Analyses were performed in
duplicate for each hydrolysate and the radical scavenging capacity was expressed as µmol
Trolox equivalents/mL (µmol TE/mL).
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2.7. Determination of the Antioxidant Capacity by the Ferric Reducing Antioxidant Power
(FRAP) Assay

The reducing capacity of the peptide hydrolysates was determined according to previ-
ously reported methods [24,25] with minor modifications. The FRAP reagent was prepared
by mixing TPTZ solution with FeCl3 solution and acetate buffer, and then adding it to the
hydrolysates (50 µL of supernatant). The absorbance was determined at 593 nm after incu-
bation of the reaction mixture in the dark at room temperature for 4 min. Analyses were
performed in duplicate for each hydrolysate and the antioxidant capacity was expressed as
µmol TE/mL.

2.8. Nano HPLC-HRMS Analysis

To further purify the peptide mixtures, a protein precipitation step has been performed
by adding to 100 µL of each sample (SM-substrate, SM-TCA, SM-beads) 5 volumes (500 µL)
of glacial acetone; after 30 s of sample vortexing they were incubated at −20 ◦C for 1 h,
centrifuged (Eppendorf 5804R refrigerated centrifuge with A-4-44 rotor, Eppendorf Srl,
Milan, Italy) for 20 min at 14,500 g, and the supernatant containing the peptide mixture
was transferred in a new Eppendorf tube. The remaining pellets were washed by adding
additional 500 µL of glacial acetone and another centrifugation step was performed together
with the recovery of the supernatant. The two aliquots of supernatant were dried in a
vacuum concentrator (Vacuum Concentrator RVC 2–18 CD plus, Martin Christ, Osterode
am Harz, Germany) and the new pellets obtained were resuspended in 30 µL of 5% ACN,
0.1% FA. Peptide mixtures were extracted by using two C18 Ziptips with a binding capacity
of 5 µg each (10 µg) and eluted in 80% ACN, 0.1% FA. The hydrolysates were further dried
in a vacuum concentrator and finally dissolved in an appropriate volume (30 µL) of mobile
phase (0.1% TFA) for mass spectrometry (MS) analysis.

Peptide mixtures were analyzed in duplicate by nano-LC-HRMS as described by
Degani et al. with few modifications in the multi-step separative gradient [26]. Briefly,
for each sample, 5 µL of solubilized peptides in 0.1% TFA were injected onto the Acclaim
PepMap C18 column (75 µm× 15 cm, 100 Å pore size), protected by a pre-column (Acclaim
PepMap, 100 µm × 2 cm, 100 Å pore size), both from Thermo Scientific (Milan, Italy).
After the sample loading, peptide separation was performed by the nanoflow pump with
a linear gradient of buffer B (0.1% FA in ACN) from 1% to 40% (70 min), followed by a
further 5 min of linear gradient from 40% to 95% (buffer B); then 5 min at 95% of buffer
B served to rinse the column before the re-equilibration to initial conditions (7 min at
99% of buffer A, 0.1% FA in H2O). The nano-chromatographic system was connected to
an LTQ-Orbitrap XL mass spectrometer equipped by a Thermo Scientific (Milan, Italy)
dynamic Nanospray ion source, and operated in data-dependent acquisition mode (DDA)
to acquire selected full MS spectra, and MS/MS spectra. Xcalibur software (version 2.0.7,
Thermo Scientific Inc., Milan, Italy) was used to control the mass spectrometer. A Pierce
LTQ ESI Positive Ion Calibration Solution was used for positive calibration of Thermo
Scientific orbitrap instrument.

2.9. Statistical Analysis

The comparison between L. acidophilus (LA 14) and L. helveticus (LH) activity upon
72 h fermentation is based on the area values of reference peaks (measured in mV·s). The
mean area values ± standard deviation (SD) (n = 3) is reported. The statistical analysis was
performed by an unpaired Student’s t-test in GraphPad Prism Version 6.0 h.

3. Results and Discussion
3.1. Evaluation of the Fermentation Activity by RP-HPLC

A selection of ten starter cultures (see Section 2.3 for details), isolated from meat
and dairy products and identified in previous works [18–22], was tested for their ability
to grow in aerobic and anaerobic conditions. The selected strains were inoculated in
reconstituted SM and screened via RP-HPLC to assess their proteolytic activity. The
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preliminary outcomes highlighted a higher activity, chromatographically evaluated, of
L. acidophilus LA 14 (ref. 1004) and L. helveticus (ref. LH, field strain) for the production
of peptide components in fermented milk. Therefore, such selected microorganisms were
submitted to more detailed investigations by monitoring their activity at different times
(between 12 h and 400 h upon fermentation).

Based on data reported by other authors [27,28], in order to get the separation of the
major number of peaks belonging to the desirable peptide fraction, several chromatographic
experimental conditions were properly selected. Accordingly, the gradient profile, along
with column temperature and flow rate, was progressively adapted by relying upon the
heuristic “trial-and-error” method [29]. The preliminary optimization step was carried
out by using a common reversed phase stationary phase. The addition of 0.1% (v) TFA as
lipophilic ion-pairing additive to both components of the mobile phase (water and ACN)
revealed to be an optimal compromise to guarantee the reproducibility of chromatographic
runs [30–34]. Additionally, the simultaneous optimization of both temperature (from 25
to 40 ◦C) and gradient steepness demonstrated being a powerful tool to control band
spacing and separation of the complex mixtures under investigation [32–34]. The optimal
identified experimental conditions were screened on several RP columns [29,35] (See
Section 2.2 for details). The Gemini NX column proved to be the best performing one
in terms of separation and resolution factor and, therefore, was selected to carry out the
chromatographic analyses applied to the real samples.

The scanning of microorganism activity and successive selection were made by fol-
lowing the chromatographic trend of some reference peaks during the gradient elution. In
Figure 1, the chromatographic profiles obtained from SM fermented with an L. acidophilus
strain and L. helveticus, in the timeframe 12–400 h, are shown.

Based on these preliminary results, and in line with data reported by other au-
thors [13,36], L. helveticus showed a higher likelihood, and more constant over the time,
proteolytic activity than L. acidophilus. Figure 2 shows the comparison between the two
strains’ activities (upon 72 h fermentation), based on area values of reference peaks. More-
over, a comparison of antioxidant and ACEi activities between the two LAB strains, which
confirms the higher properties of hydrolysate from L. helveticus (upon 12 h fermentation),
is exemplarily reported in Table 1.

Table 1. Comparison of the antioxidant (by ABTS and FRAP assays) and ACEi activities of hy-
drolysates after 12 h fermentation with L. acidophilus and L. helveticus. Values are expressed as mean
values ± standard deviation (SD), n = 2.

Strain ABTS (µmol TE/mL) FRAP (µmol TE/mL) ACEi Activity%

L. acidophilus (LA 14) 12.07 ± 0.00 23.14 ± 0.00 36.81 ± 2.62
L. helveticus (LH) 42.07 ± 0.00 30.06 ± 0.00 74.37 ± 3.82

Detailed mean area values± SD (n = 3) are reported in Table S2 (Supplementary Material).
Therefore, L. helveticus stood out as a producer of BPs in fermented milk, further

investigations were deepened to explore its use as potential candidate for BPs production.
With the aim of maximizing L. helveticus activity, the results obtained from fermented SM
were compared with those produced by inoculating BHI and PW as substrates (Figure 3).
In this phase, two extraction strategies were appraised: the more “conventional” extraction
by centrifugation in the presence of TCA at 4 ◦C [37], and the extraction by using glass
beads [38]. Comparing these two extraction methods, it was possible to determine the
potential cell membrane disruption for the recovery of intracellular bioactive compounds.
The results highlighted no significant differences between the two methods. Indeed, the
chromatographic profiles obtained on cell lysates produced by mechanical glass bead
disruption were found to be similar to those achieved by treatment with TCA. This would
suggest that the majority of BPs are in the culture medium and any other intracellular
component did not influence their concentration.
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Figure 1. Chromatographic profiles obtained from SM substrate fermented with (a–c) L. acidophilus strain (strain LA 14) and
(d–f) L. helveticus (LH field strain), at time points of 12 h, 72 h, and 400 h, respectively. The hydrolysates were extracted
by TCA at 4 ◦C (see Section 2.4 for details). An enlarged portion of each chromatogram in the time-window 15–30 min
is reported to evidence the richness of the chromatographic profile relatively to minor intensity detected peaks. The
interference peak detected at 12 min corresponds to the TCA additive.

The elution profiles shown in Figure 3 highlighted substantial differences in terms of
proteolytic activity by changing the substrate. On the contrary, a negligible impact was
recorded by comparing the profiles relative to the two extractive protocols (TCA vs. beads)
for each substrate. It can be observed that hydrolysates from BHI and PW showed similar
and richer chromatographic profiles with respect to hydrolysate from SM.

3.2. Antioxidant and ACE-Inhibitory Activity of Peptide Hydrolysates

Several food-derived peptides have been found to exhibit antioxidant properties gen-
erally without noticeable side effects and with high activity and easy absorption [39,40].
Several properties such as structure, hydrophobicity, amino acids composition and their
specific positioning and configuration in the peptide sequence, seem to significantly influ-
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ence the antioxidant activity of peptides [41,42]. Furthermore, hydrolysate concentration
and molecular weight were also found to affect antioxidant properties [43].

In the present study, the antioxidant activity of the hydrolysates from L. helveticus
fermented substrates was evaluated and compared by relying upon the free radical scav-
enging activity (measured through the ABTS assay) and the reducing capacity (measured
through the FRAP assay). As shown in Table 2, the hydrolysates obtained by using BHI
as starting fermentation substrates showed the highest values of antioxidant activity de-
termined by FRAP and ABTS assays. Instead, a controversial behavior was observed
for the hydrolysates from SM and PW substrates; indeed, while in the former case the
lowest antioxidant activity was measured by ABTS, in the latter the lowest FRAP activity
was obtained.
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Figure 3. Chromatographic analysis of L. helveticus hydrolysates obtained with the three substrates (SM, BHI, and PW) and
extracted by TCA at 4 ◦C or by using glass beads. The interference peak detected at 12 min corresponds to the TCA additive.

Table 2. Summary of antioxidant (by ABTS and FRAP assays) and ACEi activities of hydrolysates.
Values are expressed as mean values ± standard deviation (SD), n = 2.

Hydrolysate ABTS (µmol TE/mL) FRAP (µmol TE/mL) ACEi Activity% *

SM-TCA 17.00 ± 0.00 23.02 ± 0.00 81.77 ± 1.37
BHI-TCA 245.40 ± 0.00 29.55 ± 0.00 53.65 ± 1.82
PW-TCA 55.67 ± 0.00 9.58 ± 0.00 87.30 ± 1.59

SM-Beads 26.27 ± 0.00 20.84 ± 0.00 70.12 ± 3.81
BHI-Beads 261.40 ± 0.00 25.12 ± 0.00 49.59 ± 0.49
PW-Beads 64.87 ± 0.00 10.53 ± 0.00 97.75 ± 1.87

* Measured by reversed phase-high performance liquid chromatography (RP-HPLC).

Concerning the ACEi activity, L. helveticus strains have been designated among the
preferential sources to achieve a hypotensive effect, thanks to the excellent microbial
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proteolytic system involved in conversion of milk proteins into oligopeptides [16,43].
Accordingly, we tested the ACEi activity of L. helveticus hydrolysates produced in the
presence of the three selected substrates. The results highlighted an in vitro activity close
or over 50%, comparable with data reported by other authors [12,13,43]. The higher ACEi
activity in the presence of PW with respect to the SM (Table 2) could be related to the higher
peptide content of the starting substrate which, in turn, supports or integrates the efficiency
of the proteolytic system. As shown in Table 2, the lowest ACEi activity was obtained for
BHI hydrolysates and, outstandingly, was inversely correlated to the antioxidant activity
(both in terms of ABTS and FRAP assay). A similar trend was recorded between ACEi and
FRAP assay when PW was the starting substrate; in fact the highest ACEi activity matched
the lowest FRAP value.

3.3. Profiling of SM Samples by Mass Spectrometry

To highlight any difference between the produced hydrolysates (by treatment in TCA
or glass beads) and the starting substrate (not submitted to fermentation, and extracted by
TCA analogously to the fermented samples), a nano-HPLC-HRMS analysis was carried
out. This part of the study, preliminarily addressing profiling of SM samples, allowed
distinguishing of those fractions likely responsible for either the above antioxidant, ACEi,
or both, activities.

Figure 4 compares the MS profiles (total ion current—TIC) of the three samples
analyzed by HRMS (SM-substrate, SM-TCA, and SM-beads) zooming into the separative
gradient interval characterized by the presence of the main peaks (10–55 min). Overall,
the MS profiles showed some overlapping peaks flanked by some other peaks uniquely
present in the fermented samples (SM-TCA and SM-beads) with respect to the SM-substrate.
Therefore, the preliminary identification of fractions in SM was focused on the TIC interval
characterized by an appreciable diversity in terms of newly formed species (Figure 5) due
to the sample treatment with L. helveticus (40–50 min).
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SM-Beads samples acquired in DDA mode. The light red squares highlight the peaks of interest.

From the zoomed-in window (40–50 min) shown in Figure 5, three major peaks in the
profile of the two fermented samples with respect to the substrate were highlighted. By
in-depth investigation of the new species eluting under those peaks, the newly formed
species were defined on the basis of their m/z and shown in Figures S1–S3 (Supplementary
Material), where the full MS spectra of each peak, with RT 42.57 ± 0.16 min, 45.75 ± 0.19,
and 47.12 ± 0.15 min, respectively, are reported for the three samples.

4. Conclusions

In the present work, the proteolytic activity of several starter cultures, isolated from
meat and dairy products, sampled at different fermentation times and grown in different
substrates, was evaluated. The fine optimization of the RP-HPLC method allowed screen-
ing of the proteolytic activity by following the chromatographic profile of selected peaks
during the gradient elution. Of the investigated strains, L. helveticus showed a higher likeli-
hood, and more constant over the time, proteolytic activity and was, therefore, selected for
further investigations. The results of the chromatographic analyses, coupled with in vitro
antioxidant (ABTS and FRAP) and antihypertensive (ACE inhibitory) assays, evidenced a
remarkable dependence of L. helveticus activity on the starting substrate. This aspect could
be gainfully exploited when a specific activity needs to be privileged to functionalize a food
with pro-health peptides. Moreover, a nano-HPLC-HRMS system was implemented to
discriminate those fractions which, differently from the non-fermented substrates, would
be potentially responsible for the found activity.

The preliminary results obtained in this study underline the necessity of consider-
ing a multiplicity of factors to exploit the potential bioactivity associated with peptides
produced upon fermentation. Evidently, innovative separation and purification processes
are mandatory to isolate the desirable peptide fractions following an initial screening,
being aware, at the same time, that a significant variation in terms of bioactivities can be
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expected by the use of purified peptides over the non-purified hydrolysates. All these
aspects become particularly crucial when large-scale production of healthful food or food
ingredients is intended. In this context, more in-depth investigations addressing peptide
sequence identification would enable the molecular characterization of such bioactive
components. This, in turn, would also result in being helpful to reach a better knowledge
of specific targets.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-341
7/11/2/811/s1, Table S1: Time sampling scheme for strain fermentation activity evaluation, Table S2:
Comparison between L. acidophilus (LA 14) and L. helveticus (LH) activity upon 72 h fermentation,
reported as mean area values of reference peaks (measured in mV·s) ± standard deviation (SD),
n = 3 for each selected peak., Figure S1: Full MS spectrum of the three samples a) SM-Substrate,
b) SM-TCA, c) SM-Beads, related to the RT including the peak at 42.57 ± 0.16 min. The m/z of the
newly formed peptides are highlighted in red. Figure S2: Full MS spectrum of the three samples
a) SM-Substrate, b) SM-TCA, c) SM-Beads, related to the RT including the peak at at 45.75 ± 0.19 min.
The m/z of the newly formed peptides are highlighted in red., Figure S3: Full MS spectrum of the
three samples a) SM-Substrate, b) SM-TCA, c) SM-Beads, related to the RT including the peak at at
47.12 ± 0.15 min. The m/z of the newly formed peptides are highlighted in red.
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